Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes
نویسندگان
چکیده
Here we further characterize a number of properties inherent to the thermotolerant cell. In the preceding paper, we showed that the acquisition of the thermotolerant state (by a prior induction of the heat-shock proteins) renders cells translationally tolerant to a subsequent severe heat-shock treatment and thereby results in faster kinetics of both the synthesis and subsequent repression of the stress proteins. Because of the apparent integral role of the 70-kD stress proteins in the acquisition of tolerance, we compared the intracellular distribution of these proteins in both tolerant and nontolerant cells before and after a severe 45 degrees C/30-min shock. In both HeLa and rat embryo fibroblasts, the synthesis and migration of the major stress-induced 72-kD protein into the nucleolus and its subsequent exit was markedly faster in the tolerant cells as compared with the nontolerant cells. Migration of preexisting 72-kD into the nucleolus was shown to be dependent upon heat-shock treatment and independent of active heat-shock protein synthesis. Using both microinjection and immunological techniques, we observed that the constitutive and abundant 73-kD stress protein similarly showed a redistribution from the cytoplasm and nucleus into the nucleolus as a function of heat-shock treatment. We show also that other lesions that occur in cells after heat shock can be prevented or at least minimized if the cells are first made tolerant. Specifically, the heat-induced collapse of the intermediate filament cytoskeleton did not occur in cells rendered thermotolerant. Similarly, the disruption of intranuclear staining patterns of the small nuclear ribonucleoprotein complexes after heat-shock treatment was less apparent in tolerant cells exposed to a subsequent heat-shock treatment.
منابع مشابه
Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملP-131: Effects of Heat Shock during Early Stage of Oocyte Maturation on Meiotic Progression and Subsequent Embryonic Development and Gene Expressionin Ovine
Background: Heat shock may affect different aspects of oocyte maturation and its subsequent development to the blastocyst stage. A series of in vitro experiments was performed to determine whether physiologically heat shock (41°C) disrupts the progression of the ovine oocytes through meiosis, activation and blastocyst formation. Materials and Methods: The cumulus-oocyte complexes (COCs) were as...
متن کاملEffects of hepatitis C virus NS3 protein on expression of heat shock protein 70 and Glypican3 as the markers of hepatocellular carcinoma
Background and Aims: Hepatitis C virus (HCV) infection is an important risk factor for the development of liver cancer. The HCV NS3 protein plays a key role in the virus life cycle and can affect normal cellular activities, such as cell proliferation, cell death, and cell signaling pathways. Moreover, it may influence malignancy development. Two cellular genes, heat shock protein 70 (HSP70) and...
متن کاملThe Dynamic Nuclear Redistribution of an hnRNP K-homologous Protein during Drosophila Embryo Development and Heat Shock. Flexibility of Transcription Sites In Vivo
The Drosophila protein Hrb57A has sequence homology to mammalian heterogenous nuclear ribonucleoprotein (hnRNP) K proteins. Its in vivo distribution has been studied at high resolution by confocal laser scanning microscopy (CLSM) in embryos injected with fluorescently labeled monoclonal antibody. Injection of antibody into living embryos had no apparent deleterious effects on further developmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 106 شماره
صفحات -
تاریخ انتشار 1988